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Introduction: Prediction At The Edge

A growing need for using ML Inference on Edge Devices
o  Four categories (right)
Reduced Latency, but with costs

o Power, performance
o Most importantly: variability

Current solutions do not directly address variability

Our solution: dynamic real-time inference
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Figure 1: Application categorization.




Background Work: Dynamic Inference
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e None of the methods talks about continuous inference, the focus is on improving a single run.



Problem Statement: Evidence

e Runtime varies according to number of MACs in a model
e Experiments were ran with MobileNet Models on an android device

MobileNet version MACs  Paramerers Top1l  Lowerbound Upper bound
(Millions)  (Millions) accuracy runtime (ms) runtime (ms)

mobilenet v2 1.4 224 582 6.06 75.0 150 280
mobilenet v2 1.3 224 509 5.34 74.4 120 210
mobilenet v2 1.0 224 300 3.47 71.8 70 150
mobilenet v2 0.75 224 209 2.61 69.8 50 110
mobilenet v2 0.5 224 97 1.95 65.4 30 55

mobilenet v2 0.35 224 59 1.66 60.3 20 45




Problem Statement: Evidence
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Problem Statement: Formalization

ideal runtime

e Thus, thereis a tradeoff between accuracy and runtime 5“’93' aceuracy
e Weformalize this problem in the following way:

better than ideal runtime
lesser accuracy
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Continued from previous slide

R, = max(0,r — 7)? (1)

where R, is the runtime penalty, 7 is the actual inference runtime and 7 is the ideal runtime,

which is the lowest runtime achieved from the best performing model/exit-path.

Ap=(aG— a) (2)

where A, is the accuracy penalty, a is the ideal accuracy (highest accuracy achieved from
a model/exit-path) and a is the accuracy of the model chosen to run a single inference.



Approach: Estimating CPU Load

e Minimizing the total
penalty is done by

reliably estimating

runtime execution

e Experimentally, we saw
that inference time and
CPU Load are correlated
(right)




Approach: Exit Path Selection Algorithm

e Estimated runtime was calculated by Algorithm 1 Exit-path selection algorithm

—_

: Input: exp, L, U, A «

2: Output: Exit path index
ft: (U—L)*avgt 3 fori=1,2,...|L| do

4: Set () = L; + (U; — L;) * exp;

5: end for

6: Setr = L|L|

7: Seta = A|L|

8 fori=1,2,...|L| do

9:  Set R,(f) =max(0,r® — )2

1. SetAY =a- A,

11: end for

12: Normalize R, and 4,

13 Th=a*xRy+ (1 —a)x A4,
14: k = argmin T,

15: Return k£




Approach: The Effect of Alpha On Penalty
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Experiments: MobileNet Architectures

e Resultsindicated that CPU load was indeed a good estimate of actual runtime
e Furthermore, our algorithm yielded relatively high accuracies while keeping runtimes low
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Experiments: MobileNet Architectures

MobileNet version =~ Average runtime Runtime variation Average accuracy

mobilenet v2 1.4 224 202.02 37.94 75.0
mobilenet v2 1.3 224 169.26 19.05 74.4
mobilenet v2 1.0 224 103.77 1.32 71.8
mobilenet v2 0.75 224 81.49 0.0 69.8
mobilenet v2 0.5 224 40.326 0.0 65.4

mobilenet all (o = 0.5) 170.10 31.84 74.82




Experiments: A ugmented MobileNets

e A modified TFLite interpreter allowed a mobilenet architecture to have multiple exit points
e Average number of image buffers dropped, as well as variation in number of image buffers

MobileNet version = Average frames dropped Variation in frame dropped

mobilenet v2 1.4 224 36 152
mobilenet all (o = 0.5) 28 11.8




Pros and cons

e Pros

o  Adeterministic algorithm, not a black box policy

o  Highly configurable algorithm

o  Reactive/proactive to background cpu load (which is a single proxy for the workload context).
e Cons

o  The hyper-parameter alpha is application specific, and device dependent.

o  Adiscrete number of exit points/models can limit the algorithm performance.



Thank you for listening

Source Code: https://github.com/vishal-keshav/cost-aware-inference-source-code



https://github.com/vishal-keshav/cost-aware-inference-source-code

