DECOUPLING SEMANTIC CONTEXT AND COLOR CORRELATION
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Introduction

Method (Baseline Architecture)

Problem statement: Color constancy

Semantic information extraction E
— using DepthWise Convolution

]rgb _ 1x/rgb < Lrgb
ry — '"Yxy [ >
! 1|Channel Wise Weighted |
Pooling Output
Branch-1
where I is the illuminated image. W 1is the white B R
balanced image. L 1s the global illumination Branch- 2
common across spatial region. S T = N R b iion
Image ([ |} | ( | L_ 1 1 | :, ..... E ........ > (R, G, B)
o Color Correlation extraction E : Spatiaolurtﬁftion E EEStimated muminationi
e [[lumination estimation is an under constrained problem. A using PointWise Convolution

e Suppressing ambiguous image regions is challenging [1].

. . . Dual branch architecture for color constancy depicting respective output tensors of each layer.
e Accurate methods are runtime inefficient.
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Method (Regularizing Micro-blocks)
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Assumptions -

e (ross-channel correlation captures statistical proper-

ties relevant for estimating illumination independently and The two design variants of micro-block architecture for soft parameter sharing over baseline
identically across the pixels in all channels. method. Non-linearization and pooling layers are not shown for a better depiction.

e local patches captures the semantic properties in an
1mage present across spatial domain without depending on

color information. Experimental Results

Approach
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e Model illumination with 11D assumption ’ :
P(Lyy\ley)

e Capture relevant spatial regions with rich semantic value
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to disambiguate the ambiguous regions.
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e Finsemble the estimated illumination from unambiguous
portions and aggregate them for global illumination estima-
t1om.
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e Find-to-end trainable dual branch architecture for extract-
ing color and semantic information independently:.
e Point-wise convolution for capturing per pixel cross-

Floating point operations
in Giga-Flops

channel correlation. = P B S ———
e Depth-wise convolution for computing the confidence
maps for each channel in the image.

e Channel-wise weighted pooling to ensemble the estimated
1llumination with respective confidence weight maps.

e Soft parameter sharing across the branches to improve

generalization accuracy.
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Comparision results of computational complexity
of different color constancy methods
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