COMPSCI 532 — Fall 2020

Map Reduce
COMPSCI 532 Project 1

Vishal Keshav, Kenneth Myers, Jessie Huo
University of Massachusetts Amherst

I. ABSTRACT

In this report we discuss an implementation of MapReduce
[1] system and the technical challenges we faced along the
way. MapReduce is a distributed computing paradigm where
user-defined map and reduce functions are invoked in a
large scale distributed system. Each data point is transformed
(mapped) and the results are then collated (reduced). The
framework takes care of how to distribute the tasks among
servers and also how to tolerate the faults when a server stops
responding. For detailed discussion on MapReduce, please
refer to the original paper. Herein, however, we will discuss
the over-all design, some implementation details and the APIs
we have exposed to make distributed MapReduce possible.
Furthermore, we also describe some of the design principals
that enabled us to implement MapReduce system in a low
level language, which in our case is C++.

II. DESIGN

At the top level, clients only interact with a master module,
communicate what needs to be done (such as where is the
data and what are the map and reduce functions), there-
after, the master orchestrate the map task and reduce task
among the worker modules. Internally, the master controls how
many worker (in a separate process) to invoke and how many
threads per worker is allowed to run. Master also implements
mechanism to detect and recover the faulty worker.

Master
(Orchestrator)

Step 1

Step 2

Map Coordinator Reduce Coordinator

N X

Worker Worker Worker Worker Worker Worker
Thread Thread Thread Thread Thread Thread

Figure 1. A high level design is shown

We deal with a system where all workers have access to
the database (either through a shared mechanism or through
the network file system). We also assume that if the master
fails, then the client will know and invoke the master again.

However, if one worker fails, the master will recover that
worker. We only deal with the failure of at most one map
and one reduce worker during map-reduce process.

The master module is a class called MapReduceMaster
that the client program must instantiate. The client program
is also required to implement the map and reduce user-
defined functions (UDF) in a class that is inherited from the
MapReducelnterface. Once the client program registers the
interface, then the map reduce program becomes aware of the
map and reduce functionality.

The interaction diagram is shown below:

4’%
filesystem
N~
Y

—_—
Worker1
‘ map_controller |<7
L)
— — T 4
|reduce_controller [¢————— _ 3
- signals worker to

.~ 7 start map
Listens on port 8240

1

Implements and
registers the interface

Client grogram

invokes

2 | process() MapReducelnterface

™

P
(Worker 2

| map_controler | MapR
— :I:I 4
‘ reduce_controller |
S vy

Listens on port 8241

=

P —
[Worker3 | 3
‘ map_controller |47
P——
ignal . ker t
signalsworkerto |
‘ reduce_controller |‘— start reduce

. 7
Listens on port 8242

o000

Figure 2. Interaction diagram for MapReduce

III. INTERFACE

In this section, we detail the MapReduce APIs through a
sample program WordCounter. The first step is to include the
“only header” MapReduce library header into the program.

#include "MapReduceMaster.h”

The client program then publicly inherits the MapRedu-
celnterface class and must implements two functions namely
map_fn and reduce_fn. The map_fn defines how a func-
tion is applied to each iterable in the data, such as a line
in a file. It must call an inherited method emitintermedi-
ate(intermediate_key, value) which will push the intermediate

key and it’s corresponding value to an array (used by MapRe-
duce program internally and described later on). Similarly the
reduce_fn must define how to reduce a key and all of the
values associated with that key. It must call emit(key, value)
which will push the reduced key-value pair to another array.

class WordCounterMapReduce: public MapReducelnterface

public:
void map_fn(string key, string value)
stringstream iss(value);
string word;
while (iss >> word) {
emitIntermediate (word, ”17);
}
}

void reduce_fn(string key,vector<string> values)
{
int count = 0;
for (int i =0; i<values.size ();
count += stoi(values[i]);

i++) {

y emit(key, vector<string >{to_string (count)});
8
Please note that the client program does not need to define the
emitlntermediate and emit functions, as they are implemented
by the base class MapReducelnterface but they must be called
by the user..

Once this is done, the client then registers the MapReduceln-
terface to the MapReduce program. This registration follows a
design principal called Factory because C++ does not support
reflection, which is quite common in other languages like Java.
The registration enables the MapReduceMaster to recognize
the map and reduce function, which it then internally uses
across the map and reduce worker servers. The code to register
the interface is shown below:
MapReducelnterfaceFactoryRegistration \

<WordCounterMapReduce> \
_WordCounterMapReduce (”MapReduce”) ;

The third and final step is to create an object of type
MapReduceMaster and invoke the process() function on it.

int main() {
int nr_workers = 2;
string inputFileName
string dataDirectory

“input.txt”;
”DataDirectory”;

MapReduceMaster masterInstance (
inputFileName ,
dataDirectory ,
nr_workers);

int result = masterInstance.process ();

return 0;

}

Please note the APIs. The constructor of MapReduceMaster
has three arguments, namely which text file is to be processed,
in which directory the input file lies and how many workers
per map and reduce are requested. The data directory is where
the map reduce program produces the output.txt as well as
temp.txt files. Note that, based on the number of workers
selected, the output and temporary files may differ as they

COMPSCI 532 — Fall 2020

would then be output_[i].txt where i is the reduce worker
index and temp_[i]_[j].txt where i is map worker index and j
is reduce worker index.

IV. IMPLEMENTATION DETAILS

Having defined the APIs, we now discuss some internal
details of the MapReduce program itself.

A. Remote procedure calls

To enable the remote procedure calls(RPC), we rely on
a C++ based RPC library [2]. This library allows us to
get rid of cumbersome low level socket programming. How-
ever, the way this library handles the remote calls is quite
primitive and low level. Hence, we build on the library to
implement our own remote protocols. We register five main
functions to each server we spawn in a separate process.
They are map_controller_module, reduce_controller_module,
exit, is_map_done and is_reduce_done. Each of these will be
discussed in later sections.

B. Fault tolerance and heart-beat mechanism

The fault tolerance is implemented to withstand at-most one
map worker and one reduce worker failure. To detect if there is
a server failure, the master continuously polls a global variable
from each server. These variables are polled by calling the
function is_map_done during map phase and is_reduce_done
during reduce phase. The calls are non-blocking because each
server handles this request in a different thread while contin-
uing the map or reduce task in a different thread. Moreover,
master sleeps for 1 seconds before polling each of the servers
again.

In each loop, the master also checks if the server listening
on different ports (the ports used in the MapReduce program)
are still alive. This is done just by checking if master can
still bind to a particular port. If it still can before the task
is completed, then the server is faulty and the fault recovery
mechanism is followed.

To recover from the server fault, the master again spawns a
process (with two threads) on the same port where the server
is able to listen again.

V. CONTROLLER IMPLEMENTATION

As mentioned previously, the master binds a num-
ber of functions to each worker and these tasks include
map_controller_module and a reduce_controller_module.

A. Map controller module

The execution of the map and reduce tasks are aided
by two additional functions, map_controller_module and re-
duce_controller_module. The map_controller_module scans
each line of the file and reads the line if a particular line hashes
to the mapper that is scanning the file. Then the registered
map function is applied to the line. Note that, even if lines are
scanned, it is not read unless required by the corresponding
mapper. In C++, there is no way to read the bytes of the file
unless someone breaks the input file into parts (which again

will scan through the file to at-least know how many lines
there are in the file).

Then it creates a temp file to store each of the intermediate
key-value pairs pushed to an array by the interface. Each of
these files has the form “temp_[mapper_id]_[reducer_id].txt”
where mapper_id corresponds to the current worker and re-
ducer_id corresponds to the reduce worker ID where this file
will end up for reduce task. Finally the module loops over all
of the emitted intermediate key-value pairs, hashes each to a
reduce worker based on the intermediate key and writes that
pair to the associated temp file. No extra work per map worker
is done in the whole process.

B. Reduce controller module

The reduce_controller_module provides analogous support.
It begins by searching for temp files with its associated id, for
example worker 2 will look for all temp files that look like
“temp_[mapper_id]_2.txt”. It then loops over the contents of
each file and builds a mapping of each key and an array of
their associated values. It then loops over each key-value in
the mapping and applies the user-defined reduce_fn from the
interface on each of these pairs which emits the result to an
array via the emit method. Finally it writes each of the reduced
key-value pairs that were pushed to the array to an output file
associated with the reducer, “output_[reducer_id].txt”.

VI. EVALUATION

To simplify the correctness of the systems, we have done
the following:

o Provided a comprehensive README.md that details and
demonstrates the behaviour of the programs with Map
Reduce library. Please see the screen captures embedded
in the README.md

o Implemented three programs namely WordCounter, In-
vertedIndex and ReverseWeblinkGraph and created a
corresponding small data sets on which these programs
operate. The correctness the of the generated output can
be visually verified.

o Implemented the spark programs for WordCounter, In-
vertedIndex and ReverseWeblinkGraph, the output of
which will be generated along with the output of the the
program we implemented with Map reduce library.

o Created a script that build the three programs and also
runs the spark programs, generates all outputs in the build
directory, which can be visually verified, as our data sets
are small.

o The programs uses more than one mapper and reducer
to demonstrates the scalability of the Map reduce li-
brary. However, once the programs are compiled, those
programs can still be used to process a different and
probably larger dataset on many worker thread by only
modifying the configuration file. Look for the con-
fig_WordCounter.txt and similary for others in the build
directory.

Here we provided a single command that can be used to
build and run everything in one step.

COMPSCI 532 — Fall 2020

sh script.sh

This command automatically copies the relevant data from
relevant directories and put them in the build directory, where
the rest of the program are compiled and outputted. For more
details, refer to the README.md.

VII. CONCLUSION

We have implemented the MapReduce program in C++
which support distributed processing, fault tolerance up to one
map and reduce worker. Our implementation is constrained by
processing a single shared file, however this constraint too can
be removed by little workaround.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” vol. 51, no. 1, 2008. [Online]. Available:
https://doi.org/10.1145/1327452.1327492

[2] Individual. (2017, 3) Rpclib c++. [Online]. Available: http://rpclib.net/

