Optimisation of Power Consumption in Wireless Network

Vishal Keshav

Department of Mathematics Indian Institute of Technology, Guwahati

Supervisor: Dr. N. Selvaraju

Introduction

- Problem Statement: Apply Queueing Theory in modelling the wireless network node and create a power consumption function along with user specified constraints and minimize it to obtain optimal system parameters.
- Why this work is relevant?
- Past research work

Background

- What is queue here?
- Significance of M/M/1
- N-policy M/M/1

State Diagram

Figure: State diagram of the system at steady state

Equation at steady state

• System equations at equilibrium

$$\lambda P_0(0) = \mu P_1(1) \tag{1}$$

$$\lambda P_0(n) = \lambda P_0(n-1), 1 \le n \le N-1 \tag{2}$$

$$(\lambda + \mu)P_1(1) = \mu P_1(2) \tag{3}$$

$$(\lambda + \mu)P_1(n) = \lambda P_1(n-1) + \mu P_1(n+1), 2 \le n \le N-1$$
 (4)

$$(\lambda + \mu)P_1(N) = \lambda P_0(N-1) + \lambda P_1(N-1) + \mu P_1(N+1)$$
 (5)

$$(\lambda + \mu)P_1(n) = \lambda P_1(n-1) + \mu P_1(n+1), n \ge N+1$$
 (6)

Solution?

Moment generating function approach

Moments at Idle, Busy and at any state.

$$G_I(z) = \sum_{n=0}^{N-1} z^n P_0(n), |z| \le 1$$
 (7)

$$G_B(z) = \sum_{n=1}^{\infty} z^n P_1(n), |z| \le 1$$
 (8)

$$G_L(z) = G_I(z) + G_B(z)$$
 (9)

$$G_{I}(z) = P_{0}(0) \sum_{n=0}^{N-1} z^{n} = \frac{1-z^{N}}{1-z} P_{0}(0)$$
 (10)

$$G_B(z) = \frac{\rho z (1 - z^N)}{\rho z^2 - (1 + \rho)z + 1} P_0(0)$$
 (11)

Moment generating function approach

With z = 1 in $G_L(z)$, we get normalization condition and L'Hospital's rule

$$G_L(1) = G_I(1) + G_B(1) = \sum_{n=0}^{N-1} P_0(n) + \sum_{n=1}^{\infty} P_1(n) = \lim_{z \to 1} G_L(z) = \frac{N}{1 - \rho} P_0(1)$$
(12)

Thus the probability of having no packet in system and system being in Idle state is given by $P_0(0) = \frac{1-\rho}{N}$. We denote P_I and P_B as probability of being in Idle and Busy state respectively. These probabilities can be derived easily using moment generating function. $P_I = G_I(1) = \lim_{z \to 1} \frac{1-z^N}{1-z} P_0(0) = NP_0(0) = 1-\rho$ and

$$P_B = G_B(1) = \lim_{z \to 1} \frac{\rho z(1-z^N)}{(1-\rho)(1-z)} P_0(0) = \rho.$$

Performance measure

Expected number of packets in Idle state:

$$E(I) = \sum_{n=0}^{N-1} n P_0(n) = \frac{1-\rho}{N} \frac{N(N-1)}{2} = \frac{(N-1)(1-\rho)}{2}$$
 (13)

Expected number of packets in Busy state:

$$E(B) = \sum_{n=0}^{\infty} n P_1(n) = G_B(1)' = \lim_{z \to 1} G_B(1)' = \frac{N \rho (1 - \rho + \rho (1 + \rho))}{2(1 - \rho)}$$
(14)

Expected number of packets in N-policy M/M/1 queue:

$$E(L) = E(I) + E(B) = \frac{N-1}{2} + \frac{\rho}{1-\rho}$$
 (15)

Performance measure

Idle Period:

$$E(T_I) = N/\lambda \tag{16}$$

Busy Period:

$$E(T_B) = \frac{N}{\mu(1-\rho)} \tag{17}$$

Busy Cycle:

$$E(T) = \frac{N}{\lambda(1-\rho)} \tag{18}$$

Cost function

- Introduction
- Assumptions
 - Fixed energy consumption is incurred per busy cycle in switching between Idle and Busy state and vice verse.
 - Energy is consumed for retaining the data packets present in the system.
 - Onstant amount of energy is consumed per Busy and Idle period in one Busy cycle.
 - Server has the flexibility of increasing servicing rate but at the expense of increased energy consumption. Linear model is taken into consideration for simplicity.
- Function

$$F(N,\mu) = C_h E(L) + \frac{C_s}{E(T)} + C_{id} \frac{E(T_I)}{E(T)} + C_b \frac{E(T_B)}{E(T)} + P_s g(\mu)$$
 (19)

Cost function construction

Cost function

$$F(N,\mu) = C_h \left(\frac{N-1}{2} + \frac{\rho}{1-\rho}\right) + C_s \frac{\lambda(1-\rho)}{N} + C_{id}(1-\rho) + C_b \rho + P_s \mu$$
(20) where $\rho = \frac{\lambda}{\mu}$.

• Any constraints?

Delay Function

• Delay function as a constraint

$$W_q = \frac{E(L')}{\lambda} \tag{21}$$

where E(L') is expected number of packets waiting in the system.

$$E(L') = E(L) - \rho = \frac{N-1}{2} + \frac{\rho}{1-\rho} - \rho = \frac{N-1}{2} + \frac{\rho^2}{1-\rho}$$
 (22)

Using equation (22) in (21), we obtain average delay per packet

$$W_q = \frac{N-1}{2\lambda} + \frac{\rho}{\mu - \lambda} \tag{23}$$

Is it a QoS need?

Solving our Problem

Problem Statement reduces to

minimize
$$F(N, \mu)$$

subject to $W_a \le D$ (24)

where D is the delay.

Did I find a closed form solution using KKT?

No, Adopted numerical optimisation technique

• Iterative version - Basic Algorithm

$$x_{k+1} = x_k + \alpha_k p_k \tag{25}$$

• Algorithms completes in 2 steps

First part-without constraint

- Find p_k Direction to move Steepest decent
- ullet Find distance lpha to move Backtracking line search
- If solution is in feasible region, algorithm completed, else go to second part

Second part - with constraint

- Reduced two variable function $F(N, \mu)$ to one variable function $f(\mu)$ using equality constraint.
- Used same method with one dimension function to obtain optimal μ and corresponding N taking constraint into consideration.
- Return the solution

Mesh of cost function

• Surface plot of the cost function

Contour with different delay

• Contour plot with constraint D=1,2,3,4,5

Results

• Results with constants $C_h = 2$, $C_s = 20$, $C_{id} = 4$, $C_b = 5$, $P_s = 20$ and $\lambda = 2.5$.

	N *	μ^*	$F(N^*, \mu^*)$
D=1	1.7611	3.3740	86.0574
D=2	2.5843	2.9958	79.6215
D=3	2.7588	2.9484	79.4818
D=4	2.7588	2.9484	79.4818
D=5	2.7588	2.9484	79.4818

Table: Optimal parameters for different delay

Performance measurement metrics, PCIF

Definition

$$PCIF = \frac{F(1, \mu_{min}) - F(N^*, \mu^*)}{F(1, \mu_{min})} * 100\%$$
 (26)

where $F(1, \mu_{min})$ represents the ordinary cost function with N=1 and minimum average servicing rate. $F(N^*, \mu^*)$ is the cost value obtained after minimization.

Results

	$F(N^*, \mu^*)$	$F(1,\mu_{min})$	PCIF
D=1	86.0574	108.8846	20.9646%
D=2	79.6215	108.8846	26.8753%
D=3	79.4818	108.8846	27.0037%
D = 4	79.4818	108.8846	27.0037%
D = 5	79.4818	108.8846	27.0037%

Table: Percentage improvement over energy minimization

Figure: Plot between Delay D and cost function F(.)

Figure: Plot between Delay D and improvement % PCIF

Figure: Plot between λ and cost function F(.) at $D \leq 2$

Figure: Plot between λ and improvement % PCIF at $D \leq 2$

Future work

- Inclusion of a different yet important QoS constraint.
- Better numerical techniques.

Thank you